“Overclocking Data Storage Subsystems: A SATA-IV Proposal”

Paul A. Mitchell, B.A., M.S.
Systems Development Consultant

All Rights Reserved
Author’s Brief Bio

began using computers in 1971, U.C. Irvine, grad school

published author, computer graphics, Harvard 1977

frequent contact with system performance issues

biased for singular enthusiasts, DIY builders, low-end budgets, human productivity

high-performance should NOT require top dollar -or- special expertise be limited to large organizations

U.S. patent pending on very high-speed storage device
Human Productivity: Small Changes Add Up

Example: save 1 ½ seconds every working minute

FTE = 2,000 hours x 60 minutes = 120,000 minutes/year

120,000 @ 1.5 = 180,000 seconds saved

180,000 / 3,600 = 50 human hours saved

100 people @ 50 hours = 5,000 human hours / year

5,000 / 2,000 = 2 ½ FTE
The Legacy PCI Slot

33 MHz clock rate

\[\times 32 \text{ bits per cycle} = 1,056 \text{ Megabits per second} \left("1G" \right) \]

\[\div 8 \text{ bits per byte transmitted} = 132 \text{ Megabytes per second} \text{ (one direction)} \]

NOTE equivalence with ATA-133 (aka “PATA”)
Overclocking Data Storage Subsystems: A SATA-IV Proposal

SATA-III
6.0 GHz clock ("6G")
/ 10 bits per byte =
600 MB per second (one direction)

SATA-II
3.0 GHz clock ("3G")
/ 10 bits per byte =
300 MB per second (one direction)

SATA-I
1.5 GHz clock
/ 10 bits per byte =
150 MB per second (one direction)
Overclocking Data Storage Subsystems: A SATA-IV Proposal

PCI Express 3.0
8.0 GHz clock
/ ~8 bits per byte = (note change to “8” here)
1.0 GB per second (one direction)

PCI Express 2.0
5.0 GHz clock
/ 10 bits per byte =
500 MB per second (one direction)

PCI Express 1.0
2.5 GHz clock
/ 10 bits per byte =
250 MB per second (one direction)
Why change from 10 bits / frame to 130 bits / frame?

8b/10b “Legacy Frame”:

```
1 0 1 0 1 0 1 0 1 0
```

1 byte

Start Bit

Stop Bit

128b/130b “Jumbo Frame”:

```
1
```

16 bytes

128 bits

Start Bit

Stop Bit
Overclocking Data Storage Subsystems: A SATA-IV Proposal

Western Digital Corporation: “Advanced Format Technology”

Figure 1
Legacy Architecture

Figure 2
Advanced Format Architecture
SATA-IV Proposal

“Sync” with PCIe 3.0 “jumbo frame”:

1 start bit + 16 data bytes + 1 stop bit ("128b/130b")

6.0 G / 8 = 750.0 MB per second

3.0 G / 8 = 375.0 MB per second

1.5 G / 8 = 187.5 MB per second
Overclocking Data Storage Subsystems: A SATA-IV Proposal

Exact Divisor is:

130 bits / 16 bytes = 8.125

16.0 G / 8.125 = 1,969 MB/s

12.0 G / 8.125 = 1,477 MB/s

8.0 G / 8.125 = 985 MB/s SATA-IV default

6.0 G / 8.125 = 738 MB/s
Visible Present Workstation

5.25” 4-in-1 enclosures proliferate for 2.5” devices (e.g. Icy Dock, Thermaltake, Enhance Technology, etc.)

4 x SATA-IV channels in RAID 0 mode

@ 984.6 MB/s = 3,938 MB/s

controller efficiency x (500 / 600) (assumed)

3,282 MB/s 3.2 GB/s
Compare “Raw Read” Results with *RamDisk Plus*

10GB ramdisk, 16GB dual-channel DDR2-800 matched quad
ASUS P5Q Deluxe motherboard, Intel Q9550 quad-core CPU
Overclocking Data Storage Subsystems: A SATA-IV Proposal

ATTO Results with RamDisk Plus:
compare NTFS compressed -and- uncompressed ramdisks
Deluxe Future Workstation

2 x 5.25” 4-in-1 enclosures =
8 x SATA-IV channels in RAID 0 mode
@ 984.6 MB/s = 7,877 MB/s
controller efficiency x (500 / 600) (assumed)

6,564 MB/s 6.5 GB/s

controller efficiency x (0.760) (measured)
5,986 MB/s 5.9 GB/s
Overclocking Data Storage Subsystems: A SATA-IV Proposal

Existing Hardware Examples
Highpoint RocketRAID 2720SGL

x8 PCIe 2.0 edge connector
2 x SFF-8087 ports
8 x 6G SATA/SAS ports
4.0 GB/s upstream bandwidth
ICY DOCK model MB994SP-4SB-1
4 x 2.5" SSD/HDD in 1 x 5.25" Bay
SATA Hot-Swap Backplane Cage
Overclocking Data Storage Subsystems: A SATA-IV Proposal

Adaptec 2236600-R mini SAS x 4 (SFF-8087) to (4) x 1 Serial ATA fan-out Cable - 0.5M
Conclusion

The SATA-IV Standard should include support for:

- variable channel speeds, perhaps with pre-sets:
 - 6, 8, 12 and 16 GHz (and so on, beyond the horizon)
- optional “jumbo frames” identical to PCIe 3.0 spec:
 - 1 start bit + 16 data bytes + 1 stop bit (“128b/130b”)
Overclocking Data Storage Subsystems: A SATA-IV Proposal

Further Reading:

“Overclocking Data Storage Subsystems: One Approach to Variable Channel Bandwidth,”
by Paul A. Mitchell, July 27, 2010
http://benchmarkreviews.com/index.php?option=com_content&task=view&id=11178&Itemid=21

“Visible Computer Futures,” by Paul A. Mitchell, October 31, 2010
http://benchmarkreviews.com/index.php?option=com_content&task=view&id=12508&Itemid=21

“Advanced Format Technology White Paper,” by Western Digital Corporation

"HighPoint 2720SGL RocketRAID Controller Review – Amazing 3GB/s Recorded With 8 Crucial C400 SSDs,”
by Paul Acorn, February 14, 2012
http://thessdreview.com/our-reviews/highpoint-2720sgl-rocketraid-controller-review-amazing-3gbs-recorded-with-8-crucial-c400-ssds/

PCI Express® 3.0 Frequently Asked Questions
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/

Highpoint website: http://www.highpoint-tech.com
Icy Dock website: http://www.icydock.com
Adaptec website: http://www.adaptec.com

Reader’s Notes: